

Mathematics Specialist Units 3,4 Test 2018

Section 1 Calculator Free Systems of Equations, Vector Calculus

STUDENT'S NAME

DATE: Friday 18 May

TIME: 20 minutes

MARKS: 19

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Three planes are defined by the following equations:

3x + 2y - z = 19, $\mathbf{r} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = 4$ and 2x + 4y - 5z = 32. Determine the coordinates of the

unique point of intersection of the three planes, using techniques of elimination.

2. (8 marks)

Given
$$\mathbf{r}(t) = \left(3\sin\frac{t}{2}\right)\mathbf{i} + \left(2\cos\frac{t}{2}\right)\mathbf{j}$$
, where $\mathbf{r}(t)$ is the position vector of a particle at time t ,

(a) Determine the cartesian equation of the path of the particle stating its shape. (3 marks)

(b) Determine $\underbrace{\mathbf{v}}_{\sim}(t)$ and $\underbrace{\mathbf{a}}_{\sim}(t)$

(2 marks)

(c) Show that
$$\underbrace{\mathbf{v}}_{\sim}(t) \cdot \underbrace{\mathbf{a}}_{\sim}(t) = -\frac{5}{16} \sin t$$

(3 marks)

3. (7 marks)

Consider the following system of equations. Note: k is a constant.

$$x-2y+3z = 1$$

$$x+ky+2z = 2$$

$$-2x+k^{2}y-4z = 3k-4$$

(a) State the value(s) of *k* for which the system has an infinite number of solutions and give a geometric interpretation. (4 marks)

(b)	State the value(s) of <i>k</i> for which the system has no solution.	(1 mark)
-----	--	----------

(c) For what value(s) of k does the system have a unique solution? (2 marks)

Mathematics Specialist Units 3,4 Test 3 2018

Section 2 Calculator Assumed Systems of Equations. Vector Calculus

STUDENT'S NAME

DATE: Friday 18 May

TIME: 35 minutes

MARKS: 34

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Intentional blank page

4. (13 marks)

The velocity vector $\mathbf{v}(t) ms^{-1}$ of a particle is given by $\mathbf{v}(t) = \left(\frac{3\pi}{4}\cos\frac{\pi t}{4}\right)\mathbf{i} - \left(\frac{3\pi}{4}\sin\frac{\pi t}{4}\right)\mathbf{j}$. The position vector of the particle at time t = 4 is $\begin{pmatrix} 0\\0 \end{pmatrix}$.

(a) Determine, for any time t

(i) the displacement vector
$$\mathbf{r}(t)$$
 (2 marks)

(ii) the speed
$$|\mathbf{v}(t)|$$
 (1 mark)

(iii) the acceleration
$$\mathbf{a}(t)$$
 (1 mark)

(c) Evaluate and interpret each of the following integrals.

(i)
$$\int_{0}^{6} \underbrace{\mathbf{v}(t)dt}_{0}$$
(2 marks)

(ii)
$$\int_{0}^{6} |\mathbf{v}(t)| dt$$
 (2 marks)

A point *Q* moving in the *x*-*y* plane has position vector $\mathbf{r}(t) = \begin{pmatrix} \cos t \\ 2\sin t \end{pmatrix}$. At t = 0 an insect crawls from the origin towards *Q* so that its position vector at time *t* is $\mathbf{R}(t) = \mathbf{r}(t) \times \sin t$, until it reaches *Q*, where it rests until $t = \frac{9\pi}{4}$ minutes.

(a) Determine the position vector of
$$Q$$
 when $t = 0$ (1 mark)

(b) How long does it take for the insect to first reach Q? (2 marks)

(c) Show that
$$\mathbf{\tilde{R}}(t) = \begin{pmatrix} \frac{\sin 2t}{2} \\ 1 - \cos 2t \end{pmatrix}$$
 (2 marks)

(d) Determine the cartesian equation for the path of the insect before it reaches Q. (2 marks)

(e)

(f) Determine the relationship between the velocity and acceleration of the insect at $t = \frac{\pi}{4}$ (2 marks)

6. (10 marks)

A tennis ball is hit with an initial velocity of $\begin{pmatrix} 26 \cdot 5 \\ 2 \cdot 7 \end{pmatrix} ms^{-1}$ at a height of 60 cm above the ground and 6.4 m from the net. The net is 0.9 m high and the opponents half of the court is twelve metres in length.

(a) Determine the velocity vector and the position vector of the ball in terms of t (time) if the acceleration acting on the ball is given by $a = \begin{pmatrix} 0 \\ -9 \cdot 8 \end{pmatrix} ms^{-2}$. (4 marks)

(b) Will the ball clear the net and if so by how much?

(3 marks)

(c) Will the ball land inside the opponent's half? Justify. (3 marks)